
Charles Crume

The True BASIC Computer Language: An Introduction and
Critique.

CHARLES CRUME is a Senior Technical Consultant, University
of Nevada System Computing Services, Computing Center
Building, Reno, NV 89557-0023.

The True Basic Computer Language: An Introduction and Critique

True BASIC is the latest implementation of the popular BASIC
programming language (Davis, 1986; Kemeny & Kurtz, 1985c). BASIC
was developed at Dartmouth College in the early 1960s by John G.
Kemeny and Thomas E. Kurtz. These professors had observed
beginning programming students for many years and decided that
time sharing, rather than traditional batch programming
techniques would be more appropriate for such students (Kemeny &
Kurtz, 1985a). BASIC was therefore developed for use with
computer time-sharing schemes. During their design of the
original BASIC, the following criteria were developed (Kemeny &
Kurtz, 1985a):

1. It should be easy to learn for the beginner.

2. It should be a general-purpose language, allowing the
writing of any program.

3. Advanced features had to be added so that, if there was a
price, it was paid by the expert, not the novice.

4. It should take full advantage of the fact that the user
could interact with the computer.

5. It should give error messages that were clear and friendly
to the user.

6. It should give fast response for small programs.

7. No understanding of the hardware should be necessary.

8. It should shield the user from the operating system.

Since the 60s, various dialects of the language have been
developed. Although the original BASIC was (and still is) a
compiled language, most dialects were implemented through
interpreters (Kemeny & Kurtz, 1985a). (Interpreters are special
programs that translate a single line of code into machine
language, then execute that line before accepting the next line
of code.) Interpreted versions were produced because most
dialects were written for microcomputers that had limited
amounts of main memory.

Many different dialects emerged for use on a variety of
hardware. This happened for several reasons. Portions of the
original BASIC language were frequently removed due to memory
limitations of various computers. Then, too, machine dependent
features were often added to take advantage of specific hardware
configurations. Davis (1986) states: Unfortunately, no two
BASICSs are quite the same. IBM BASIC differs from Apple BASIC,
and the version that runs on a Radio Shack computer differs from

both of them. A program written in Apple BASIC won't run on an
Atari computer, or on an IBM PC. Moving from one BASIC to
another is difficult, as key features are implemented in subtly
different ways. There is no single language called BASIC.
Instead, we have a series of dialects, all derived from the
original Dartmouth version. (p. iii) The resulting witches' brew
of dialects have been dubbed Street BASIC (Kemeny & Kurtz,
1985a, 1985b).

It is interesting to interject that, in its early days, BASIC
was considered to be a machine-independent computer language.
Gottfried (1975) states, "Except for minor differences between
one version of BASIC and another, the language is machine-
independent. Hence a BASIC program can be run on many different
computers" (p. 9). (It could, in fact, be argued that most
computer languages are machine-independent during the first few
years of use but become machine-dependent as they evolve and
vendors begin adding features.)

As the numerous dialects of BASIC proliferated, several general
criticisms emerged: (a) There were too many incompatible
dialects, (b) Execution was very slow (due to BASIC's
interpretive nature), (c) Variable names were often restricted
to one or two characters, (d) BASIC lacked true subroutines
(Kemeny & Kurtz, 1985a), (e) BASIC lacked local variables, and
(f) BASIC lacked data structures (other than arrays). Due to
these criticisms, BASIC's reputation became somewhat tarnished
and its use was shunned by many.

In the early 1980s, Kemeny and Kurtz decided to rectify this
confusing situation and began developing True BASIC. True
BASIC not only adheres to the design criteria originally
specified for BASIC, but also addresses many of the general
criticisms mentioned above. True BASIC includes: (a) True
subroutines; (b) Local variables; (c) Structured programming
statements such as SELECT-CASE, DO WHILE, and DO UNTIL; and (d)
Hardware-independent graphics.

The following discussion is divided into three areas: (a)
Strengths, (b) Weaknesses related to the editor and function key
definitions, and (c) Weaknesses in the language itself. These
three categories will be addressed in turn.
Strengths of True BASIC

1. Elimination of the need for line numbers . Removal of
required line numbering should make the language less
bewildering to beginners and less intimidating to children

or to anyone who fears numbers and mathematics.

2. Addition of structured programming statements . The addition
of structured programming statements such as IF-THEN-ELSE,
WHILE LOOPS, external subroutines, and modules establishes
True BASIC in the domain of general purpose programming
languages such as COBOL, FORTRAN, and Pascal.

3. The design of True BASIC's loop structure . This structure
can be represented as follows:

DO

 statement 1

 statement 2

 ...

 ...

 ...

 statement n

LOOP

This syntax, which supports the WHILE and UNTIL conditional
on either the DO or LOOP statement, is versatile and
powerful. FORTRAN and versions of Street BASIC restrict the
conditional to the statement beginning the loop. Pascal, on
the other hand, has two loop statements, depending on
whether the conditional WHILE or UNTIL is used. This may be
confusing to beginning programmers.

True BASIC also permits exits from the middle of a loop, an
important feature that Pascal lacks. The authors of True
BASIC provide a short comparison of True BASIC, Pascal, and
FORTRAN's looping characteristics (Kemeny & Kurtz, 1985a).
As they point out, the looping capabilities of True BASIC
may be especially superior to those of Street BASIC and
Pascal.

4. The ability to temporarily restrict editing changes to a
section of a program or subroutine. Few, if any, editors
provide this useful feature. Although every editor has some
mechanism for specifying a range of lines to be affected,
that range must be entered each time a command is directed
at those specific lines. The omission, or incorrect entry,
of the range can prevent intended changes from occurring or
cause changes in inappropriate places. Such problems may be
less likely to occur when using True BASIC. For example,

the temporary restriction feature allows multiple changes
to lines 20 through 50 or to subroutine "X" without
affecting other sections of the program.

5. The ability to execute a file of batch commands every time
True BASIC is started. This allows the customizing of the
True BASIC environment. For example, a teacher could create
a file that would automatically cause a computer-assisted
lesson to begin without the necessity of the user loading
the file and then entering a start up command from the
keyboard. The following lines (placed in a file called
STARTUP.TRU) would load and begin execution of a sample
grammar lesson (GRAMMAR is the filename of the True BASIC
program containing the grammar lesson).

OLD GRAMMAR

RUN

6. The ability to define, save, and recall function key
definitions. This allows the customizing of the keyboard
while using True BASIC. For example, the following commands
(entered at the True BASIC prompt) would define function
key F11 to execute the current program and the key sequence
Ctrl-P to enter the character string PRINT at the current
cursor location (the Ctrl-A is used to terminate a
definition).

KEY

 Press key to redefine: F11

 Define it as: RUN <cr> Ctrl-A

KEY

 Press key to redefine: Crtl-P

 Define is as: PRINT Ctrl-A

Redefined keys are in effect for the current True BASIC
session only. The following command will save the new key
definitions in a file called MYKEYS.

KEY TO MYKEYS

The following command will retrieve key definitions from a

file called MYKEYS.

KEY FROM MYKEYS

7. Descriptive and easy-to-use commands such as CHANGE, COPY,
FIND, and MARK. This command simplicity is in marked
contrast to counterpart commands in the vi editor of UNIX
and edit_file of NOS/VE. Commands in these editors are
enigmatic, highly abstract, and often require awkward
keystroke combinations.

8. The use of a single key (INS on the IBM/PC) to toggle
between insert and overstrike mode. This is a convenient
feature not included in many editors.

Weaknesses in the Editor and Function Key Definitions

1. The definitions for some function keys (single or multiple
key combinations used in lieu of commands to perform oft-
repeated commands) are confusing and should be changed.
Specifically, Ctrl Home (delete previous word), Ctrl PgUp
(delete to end of current word), Esc (delete from cursor to
start of line) and Ctrl End (delete from cursor to end of
line) seem illogical and appear to have been an
afterthought. Since True BASIC is not a word processor, the
removal of Ctrl PgUp and Ctrl Home are recommended. They
are not needed, since the deletion of a single word can be
accomplished by holding down the delete key until all
characters are removed. Larger blocks of text can be easily
removed by using the mark text function key and deleting
the block. Additionally, changing Esc to Alt-left-arrow and
Ctrl End to Alt-right-arrow might be more appropriate for
their intended functions.

2. The keystroke combination to pause program execution is
awkward, and the combination to resume execution is
susceptible to accidental triggering. True BASIC uses the
key combination Ctrl/NumLock to cause an executing program
to pause (allows the examination of output during program
debugging). Any key can then be pressed to resume
execution. This is probably a poor programming choice since
an accidental key press can cause a premature resumption.
Similar problems can occur when using any language or
operating system. For example, the present authors have
typed in the command DISKCOPY, paused to examine a
reference manual, and accidentally allowed a corner of the
manual to rest on the keyboard. The resulting keystroke

caused DISKCOPY to begin execution before the proper disks
were in the drives. A solution to this True BASIC problem
might be to use the common standard of Ctrl-S (pause) and
Ctrl-Q (resume).

3. The OLD command is a poor choice for retrieving programs
from disk. It appears the language developers chose OLD
because it is the opposite of NEW (which clears the current
program from the editor). Perhaps GET (the opposite of
SAVE, which writes programs to disk) might be a better
choice as it is more descriptive of what the command does.
Two new function key definitions are suggested: (a) Ctrl
HOME to supplant NEW, and (b) Alt HOME for recovering
inadvertently cleared programs. Recovering cleared programs
is a feature missing from True BASIC.

4. The command UNSAVE (used to erase a program from disk) is
obscure. ERASE, which is used in many other applications,
would probably be a better choice, since UNSAVE is not a
real word.

5. The TRY and REPLACE commands might serve better as options
on the CHANGE and SAVE commands. Options are more in line
with Kemeny and Kurtz's original design criteria. Too many
commands impose a burden on the beginning user.

A prime example of an excessive number of commands is Control
Data Corporation's new operating system NOS/VE. The quick
reference manual is over 1,200 pages in length and spans two
physical volumes! There are so many commands that experienced
systems analysts have difficulty remembering them.

Options, on the other hand, can be ignored. The system can (and
should) provide default values. When a default is inappropriate,
the system should prompt the user for the desired course of
action. Possible alternatives might include PROCEED ANYWAY or
ABORT THE COMMAND.

Weaknesses in the Language Itself

1. The NOLET option should be discontinued . The authors of
True BASIC state that every line should begin with a
command keyword (Kemeny & Kurtz, 1985a). Although
compatibility with versions of Street BASIC is both
important and desirable, NOLET is in direct conflict with
the above concept. The removal of NOLET would enable the
addition of continuation lines (discussed next).To promote
the conversion of Street BASIC programs into True BASIC, a
DO program might be advisable. Such a program would add LET

keywords in the appropriate places.

2. The language lacks continuation lines . Due to this, True
BASIC statements longer than 80 columns extend past the
edge of the screen. As the entire screen cannot be shifted
to the right, it is difficult to view and modify such
lines. If NOLET were removed, continuation lines could be
implemented easily. Any line not beginning with a True
BASIC keyword would automatically be a continuation of the
previous line. If NOLET is kept, then some character
sequence at the end of a line could indicate the presence
of a continuation line. Perhaps a double period (..) or a
double ampersand (&&) might be a good choice.

3. Radians are the default for trigonometric functions . Kemeny
& Kurtz make the point that mathematicians use radians but
the rest of us use degrees when computing angles, arcs, and
other trigonometric figures (Kemeny & Kurtz, 1985c). Their
choice of radians as the default and degrees as the option
conflicts with their own design criteria and should be
reversed.

4. The function MAXNUM is practical for finding the largest
number, but EPS(0) for finding the smallest number is
awkward and appears to violate several of the author's
design criteria (specifically items 1 and 3 on the first
page of this paper). This also appears to violate an
unwritten rule the authors of True BASIC have adopted for
naming commands-that of word/word-opposite (such as
SAVE/UNSAVE, OLD/NEW). The addition of a function called
MINNUM is recommended.

5. The SPLIT command is repeatedly issued to accommodate
program output in the history window. This is a nuisance
when switching between program execution and program
editing. If SPLIT were permitted as a True BASIC statement,
it would allow run-time control of the history and editing
windows.

6. Circles and boxes are plotted relative to their lower left
hand corner (Kemeny & Kurtz, 1985c, 1985b). While probably
easier for the machine to plot, a center point with a
radius (width and length for rectangles) would be more
logical to programmers. Extra work should be done by the
machine, not the user.

7. The collating sequences used in computer codes such as
EBCDIC, ASCII, and CDC display code are arcane. The ASCII
collating sequence of ABC...Z[\^-'abc...z used by most
microcomputers makes it difficult to alphabetize names,
addresses, and anything else containing both upper-case and

lower-case letters. Assuming the collating sequence will
never be changed to AaBbCc...Zz (or aAbBcC...zZ), the
addition of COLLATE= to the True BASIC OPTION statement is
urged. COLLATE=UPPER would stipulate the normal ASCII
collating sequence; COLLATE=LOWER, that the cases are
reversed; COLLATE=UPPER/LOWER, that the lower-case letters
are merged behind their upper-case counterparts; and
COLLATE=LOWER/UPPER, that the upper-case letters are merged
behind their lower case counterparts. Any other
specification following COLLATE= would indicate the name of
a file containing a user specified collating sequence. This
would be a powerful addition to the language.

8. A PARAMETER statement should be added to True BASIC . While
the value of variables can be modified during program
execution, constants can not. A PARAMETER statement, such
as that of FORTRAN, would allow symbolic names (variables)
to be equated with a constant. Parameters ease the
maintenance of constants used throughout a program. A
single change in a PARAMETER statement propagates to all
affected statements referencing the specified symbolic name
(variable). Parameters are also useful in maintaining array
dimensions, especially when several arrays each with
multiple dimensions must be changed periodically (number of
students in a class, questions on an exam).

9. True BASIC lacks the ability to inspect if a pixel is set
or not set and check its color using the current screen
coordinates. This ability would be beneficial for graphics
applications involving animation when users may not want to
draw over the top of an existing line or figure.

10. True BASIC lacks the ability to check the contents of any
character position as well as its color. The addition of
this feature would be helpful for graphics screens
manipulating animated figures.

11. True BASIC lacks logical constants and variables . The
addition of TRUE and FALSE values are recommended to make
it easier when writing programs involving Boolean logic.

12. True BASIC lacks record structures . The addition of record
structures would allow the creation and manipulation of
data structures such as linked lists and binary trees.
Their addition is highly recommended for the teaching of
advanced programming concepts.

Summary

Overall, True BASIC is a well-designed language. It is easy to
learn and use yet powerful enough for many sophisticated
programming projects. Other educators will no doubt offer other
enhancements. With such improvements, True BASIC may surpass
both FORTRAN and Pascal as the language of choice, not only for
teaching beginning programming, but also for use as a powerful
general purpose programming language.

References

Davis, W. S. (1986). True BASIC primer. Reading, MA: Addison-
Wesley.

Gottfried, B. S. (1975). Programming with BASIC. New York:
McGraw-Hill.

Kemeny, J. G., & Kurtz, T. E. (1985a). Back to BASIC, the
history, corruption, and future of the language. Reading, MA:
Addison-Wesley.

Kemeny, J. G., & Kurtz, T. E. (1985b). True BASIC Reference
Manual. Reading, MA: Addison-Wesley.

Kemeny, J. G., & Kurtz, T. E. (1985c). True BASIC Users Guide
with Instructions for the IBM/PC. Reading, MA: Addison-Wesley.

